SYLLABUS

REGARDING THE QUALIFICATION CYCLE FROM 2022/2023 TO 2022/2023

1. Basic Course/Module Information

Course/Module title	Food biotechnology	
Course/Module code *		
Faculty (name of the unit	College of Natural Sciences	
offering the field of study)	Institute of Food and Nutrition Technology	
Name of the unit running the course	Department of Bioenergetics, Food Analysis and Microbiology	
Field of study	Food technology and human nutrition	
Qualification level		
Profile	General academic	
Study mode	Part-time	
Year and semester of studies	Winter semester	
Course type	Erasmus + program	
Language of instruction	English	
Coordinator	Maciej Kluz PhD	
Course instructor	Maciej Kluz PhD	

^{* -} as agreed at the faculty

1.1.Learning format – number of hours and ECTS credits

Semester (no.)	Lectures	Classes	Colloquia	Lab classes	Seminars	Practical classes	Internships	others	ECTS credits
Winter	15			15					5

1.2. Course delivery methods

- conducted in a traditional way
- 1.3. Course/Module assessment (exam, pass with a grade, pass without a grade)

Ехам

2. PREREQUISITES

Completed course: general and inorganic chemistry, organic chemistry, food microbiology, biochemistry

3. OBJECTIVES, LEARNING OUTCOMES, COURSE CONTENT, AND INSTRUCTIONAL METHODS

3.1. Course/Module objectives

01	Discuss the characteristics and role of microorganisms in food hygienie.
02	Discuss the food safety and hygiene.

3.2. COURSE/MODULE LEARNING OUTCOMES (TO BE COMPLETED BY THE COORDINATOR)

Learning Outcome	The description of the learning outcome defined for the course/module	Relation to the degree programme outcomes
LO_01	Has knowledge of the mechanisms of	K_W02
	bioprocesses involving microorganisms.	
LO_02	Has knowledge of the principles ofsafe	K_Wo9
	production of food produced by	
	fermentation processes.	
LO_03	Knows the use and operation of	K_W12
	bioreactors in the food industry.	
LO_04	Beableto analyse the ethical aspects a	K_Uo7
	rising from the use of microorganisms in	
	fermentation processes.	
LO_05	Be able to analyse and solve technical	K_U11
	problemsrelated to food processing.	
LO_06	Understands and cares about the work	K_Ko4
	ethic of the food biotechnology profession.	

3.3. Course content (to be completed by the coordinator)

A. Lectures

Content outline
Food biotechnology – general concept.
Concepts: bioprocess, biosynthesis, biodegradation,
biotransformation.
Use of bioreactors in the food industry.
Characteristics of biotechnological process. Types of bioprocesses.
Bioreactor types.
Principles of culture in bioreactors. Characteristics of microorganisms
used in biofermentation processes.
Bioprocess design.
Process control in the bioreactor.

A perspective on the development and use of bioprocesses in food production.

B. Classes, tutorials/seminars, colloquia, laboratories, practical classes

Content outline
Getting to know health and safety rules in the workshop.
Organizational activities.
Characteristics of microorganisms used in bioprocesses.
Principles of periodic and semi-continuous breeding.
Optimization of the culture medium. Sources of carbon, nitrogen,
micronutrients, macronutrients, bio stimulants used in bioprocesses.
Sterilization methods for bioreactors.
Optimization of processes in bioreactors.
Process analysis.
Final work.

3.4. Methods of Instruction

Lecture with multimedia presentation.

Laboratory: performing experiments, designing experiments, working in groups.

4. Assessment techniques and criteria

4.1 Methods of evaluating learning outcomes

Learning outcome	Methods of assessment of learning outcomes (e.g. test, oral exam, written exam, project, report, observation during classes)	Learning format (lectures, classes,)
LO-01	Colloquium, written assessment, exam	Lectures, Lab
LO-02	Colloquium, written assessment, exam	Lectures, Lab
LO-03	Colloquium, written assessment, exam	Lectures, Lab
LO-04	Colloquium, written assessment, exam	Lectures, Lab
LO-05	Colloquium, written assessment, exam	Lectures, Lab
LO-06	Colloquium, written assessment, exam	Lectures, Lab

4.2 Course assessment criteria

A prerequisite for passing a course is the achievement of all the assumed learning outcomes. A positive grade in the course is determined by the number of points obtained in examinations (>50% of the maximum number of points):): 2,0 (f); 50% <; 3,0 (e) 51-65%; 3,5 (d); 66-75%, 4,0 (c); 76-85%, 4,5 (b); 86-92%; 5,0 (a) 93-100%.

5. Total student workload needed to achieve the intended learning outcomes

- number of hours and ECTS credits

Activity	Number of hours
Scheduled course contact hours	30
Other contact hours involving the teacher (consultation hours, examinations)	20
Non-contact hours - student's own work (preparation for classes or examinations, projects, etc.)	75
Total number of hours	125
Total number of ECTS credits	5

^{*} One ECTS point corresponds to 25-30 hours of total student workload

6. Internships related to the course/module

Number of hours	0
Internship regulations and	0
procedures	

7. Instructional materials

Compulsory literature:

- 1. Food Biotechnology, Donald Nash, 2018, Callisto Reference, ISBN: 9781632399458
- 2. Industrial Biotechnology: Microorganisms, Christoph Wittmann, James C. Liao, Sang Yup Lee , Jens Nielsen, Wiley-VCH, 2017, ISBN-13: 978-3527341795
- 3. Biotechnology, John Smith, Cambridge University Press, 2009, ISBN: 0521711932

Complementary literature:

1. Biotechnology, David Clark, Elsevier Books, 2015, ISBN: 0123850150

Approved by the Head of the Department or an authorised person